enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    It may happen that this makes the coefficient 0. [12] Polynomials can be classified by the number of terms with nonzero coefficients, so that a one-term polynomial is called a monomial, [d] a two-term polynomial is called a binomial, and a three-term polynomial is called a trinomial. A real polynomial is a polynomial with real coefficients.

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Conversely, shows that any integer-valued polynomial is an integer linear combination of these binomial coefficient polynomials. More generally, for any subring R of a characteristic 0 field K, a polynomial in K[t] takes values in R at all integers if and only if it is an R-linear combination of binomial coefficient polynomials.

  4. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  5. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  6. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    The polynomial given by Strassen has very large coefficients, but by probabilistic methods, one can show there must exist even polynomials with coefficients just 0's and 1's such that the evaluation requires at least (/ ⁡) multiplications. [10] For other simple polynomials, the complexity is unknown.

  7. Coefficient - Wikipedia

    en.wikipedia.org/wiki/Coefficient

    In mathematics, a coefficient is a multiplicative factor involved in some term of a polynomial, a series, or any other type of expression. It may be a number without units , in which case it is known as a numerical factor . [ 1 ]

  8. Faddeev–LeVerrier algorithm - Wikipedia

    en.wikipedia.org/wiki/Faddeev–LeVerrier_algorithm

    The objective is to calculate the coefficients c k of the characteristic polynomial of the n×n matrix A, () = = ,where, evidently, c n = 1 and c 0 = (−1) n det A. The coefficients c n-i are determined by induction on i, using an auxiliary sequence of matrices

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R. Then, the quotients a i / a n {\displaystyle a_{i}/a_{n}} belong to the field of fractions of R (and possibly are in R itself if a n {\displaystyle a_{n}} happens to be invertible in R ) and the roots r i {\displaystyle r_{i}} are taken in an ...