enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection. Thus the gcd of 48 and 180 is 2 × 2 × ...

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  6. Wikipedia : Wikipedia Signpost/2025-01-15/Technology report

    en.wikipedia.org/wiki/Wikipedia:Wikipedia...

    The Euclidean algorithm is a relatively simple algorithm that allows someone to figure out what the greatest common divisor of two numbers is. The article already has a "worked example" showing all the steps with some example numbers. I made a version of that where you can put in your own numbers and step through the example step by step.

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The smallest square size, 21, is the GCD of 1071 and 462. For illustration, the Euclidean algorithm can be used to find the greatest common divisor of a = 1071 and b = 462. To begin, multiples of 462 are subtracted from 1071 until the remainder is less than 462. Two such multiples can be subtracted (q 0 = 2), leaving a remainder of 147:

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46.The greatest common divisor is the last non zero entry, 2 in the column "remainder".

  9. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.