Search results
Results from the WOW.Com Content Network
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
In contrast to linear programming, which can be solved efficiently in the worst case, integer programming problems are in many practical situations (those with bounded variables) NP-hard. 0–1 integer programming or binary integer programming (BIP) is the special case of integer programming where variables are required to be 0 or 1 (rather ...
integer programming constraint programming These branches are all closely intertwined however, since many combinatorial optimization problems can be modeled as integer programs (e.g. shortest path ) or constraint programs, any constraint program can be formulated as an integer program and vice versa, and constraint and integer programs can ...
Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...
FICO Xpress – solver for linear and quadratic programming with continuous or integer variables (MIP). FortMP – linear and quadratic programming. FortSP – stochastic programming. GAMS – General Algebraic Modeling System. Gurobi Optimizer – solver for linear and quadratic programming with continuous or integer variables (MIP).
Linear programming (LP), a type of convex programming, studies the case in which the objective function f is linear and the constraints are specified using only linear equalities and inequalities. Such a constraint set is called a polyhedron or a polytope if it is bounded .
Linear programming relaxation is a standard technique for designing approximation algorithms for hard optimization problems. In this application, an important concept is the integrality gap, the maximum ratio between the solution quality of the integer program and of its relaxation.
The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).