enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    If the matrix that corresponds to a principal minor is a square upper-left submatrix of the larger matrix (i.e., it consists of matrix elements in rows and columns from 1 to k, also known as a leading principal submatrix), then the principal minor is called a leading principal minor (of order k) or corner (principal) minor (of order k). [3]

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    If is invertible, then it admits an LU (or LDU) factorization if and only if all its leading principal minors [6] are nonzero [7] (for example [] does not admit an LU or LDU factorization). If A {\textstyle A} is a singular matrix of rank k {\textstyle k} , then it admits an LU factorization if the first k {\textstyle k} leading principal ...

  4. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    The program structure of this algorithm is a simple triple-loop, as in the standard Gaussian elimination. However in this case the matrix is modified so that each M k,k entry contains the leading principal minor [M] k,k. Algorithm correctness is easily shown by induction on k. [4]

  5. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Specifically, sign conditions are imposed on the sequence of leading principal minors (determinants of upper-left-justified sub-matrices) of the bordered Hessian, for which the first leading principal minors are neglected, the smallest minor consisting of the truncated first + rows and columns, the next consisting of the truncated first + rows ...

  6. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    For a square matrix, the diagonal (or main diagonal or principal diagonal) is the diagonal line of entries running from the top-left corner to the bottom-right corner. [ 1 ] [ 2 ] [ 3 ] For a matrix A {\displaystyle A} with row index specified by i {\displaystyle i} and column index specified by j {\displaystyle j} , these would be entries A i ...

  7. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    Compute the Sylvester matrix associated to and (). Rearrange each row in such a way that an odd row and the following one have the same number of leading zeros. Compute each principal minor of that matrix. If at least one of the minors is negative (or zero), then the polynomial f is not stable.

  8. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix L and an upper triangular matrix U if and only if all its leading principal minors are non-zero.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    A ‘quasimatrix’ is, like a matrix, a rectangular scheme whose elements are indexed, but one discrete index is replaced by a continuous index. Likewise, a ‘cmatrix’, is continuous in both indices. As an example of a cmatrix, one can think of the kernel of an integral operator.