Search results
Results from the WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
The square of n (most easily calculated when n is between 26 and 74 inclusive) is (50 − n) 2 + 100(n − 25) In other words, the square of a number is the square of its difference from fifty added to one hundred times the difference of the number and twenty five. For example, to square 62: (−12) 2 + [(62-25) × 100] = 144 + 3,700 = 3,844
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
The smallest counterexample is for a power of 15, when the binary method needs six multiplications. Instead, form x 3 in two multiplications, then x 6 by squaring x 3, then x 12 by squaring x 6, and finally x 15 by multiplying x 12 and x 3, thereby achieving the desired result with only five multiplications. However, many pages follow ...
A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The main reason for studying these numbers is to obtain their factorizations.Aside from algebraic factors, which are obtained by factoring the underlying polynomial (binomial) that was used to define the number, such as difference of two squares and sum of two cubes, there are other prime factors (called primitive prime factors, because for a given they do not factorize with <, except for a ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.