Search results
Results from the WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
The square of n (most easily calculated when n is between 26 and 74 inclusive) is (50 − n) 2 + 100(n − 25) In other words, the square of a number is the square of its difference from fifty added to one hundred times the difference of the number and twenty five. For example, to square 62: (−12) 2 + [(62-25) × 100] = 144 + 3,700 = 3,844
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
Instead, form x 3 in two multiplications, then x 6 by squaring x 3, then x 12 by squaring x 6, and finally x 15 by multiplying x 12 and x 3, thereby achieving the desired result with only five multiplications. However, many pages follow describing how such sequences might be contrived in general.
Combining two consecutive steps of these methods into a single test, one gets a rate of convergence of 9, at the cost of 6 polynomial evaluations (with Horner's rule). On the other hand, combining three steps of Newtons method gives a rate of convergence of 8 at the cost of the same number of polynomial evaluation.