Search results
Results from the WOW.Com Content Network
As an example of propagation without dispersion, consider wave solutions to the following wave equation from classical physics =, where c is the speed of the wave's propagation in a given medium. Using the physics time convention, e − iωt , the wave equation has plane-wave solutions u ( x , t ) = e i ( k ⋅ x − ω ( k ) t ...
As was our expectation, the frequency distribution can be separated into two parts. One is t ≤ 0 and the other is t > 0. The white part is the frequency band occupied by x(t) and the black part is not used. Note that for each point in time there is both a negative (upper white part) and a positive (lower white part) frequency component.
By applying the Fourier transform and using these formulas, some ordinary differential equations can be transformed into algebraic equations, which are much easier to solve. These formulas also give rise to the rule of thumb " f ( x ) is smooth if and only if f̂ ( ξ ) quickly falls to 0 for | ξ | → ∞ ."
While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, = / produces a signal that is anti-periodic in frequency domain (+ =) and vice versa for = /. Thus, the specific case of a = b = 1 / 2 {\displaystyle a=b=1/2} is known as an odd-time odd-frequency discrete Fourier transform (or O 2 DFT).
A simple answer is to sample the continuous Gaussian, yielding the sampled Gaussian kernel. However, this discrete function does not have the discrete analogs of the properties of the continuous function, and can lead to undesired effects, as described in the article scale space implementation .
If the considered function is the density of a normal distribution of the form = [()] where σ is the standard deviation and x 0 is the expected value, then the relationship between FWHM and the standard deviation is [1] = .
In quantum mechanics, the variational method is one way of finding approximations to the lowest energy eigenstate or ground state, and some excited states.This allows calculating approximate wavefunctions such as molecular orbitals. [1]
The formal foundation of TDDFT is the Runge–Gross (RG) theorem (1984) [1] – the time-dependent analogue of the Hohenberg–Kohn (HK) theorem (1964). [2] The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density.