Search results
Results from the WOW.Com Content Network
The study of functions of a complex variable is known as complex analysis and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see prime number theorem for an example).
A complex-valued function of several real variables may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x 1, …, x n) is such a complex valued function, it may be decomposed as
A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a (not necessarily proper) subset of the complex numbers as a domain and the complex numbers as a codomain. Complex functions are generally assumed to have a domain that contains a nonempty open subset of the complex plane.
A complex-valued function of a real variable may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x) is such a complex valued function, it may be decomposed as f(x) = g(x) + ih(x), where g and h are real-valued functions. In other words ...
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space ), which the Mathematics Subject ...
More precisely, let f be a function from a complex curve M to the complex numbers. This function is holomorphic (resp. meromorphic) in a neighbourhood of a point z of M if there is a chart ϕ {\displaystyle \phi } such that f ∘ ϕ − 1 {\displaystyle f\circ \phi ^{-1}} is holomorphic (resp. meromorphic) in a neighbourhood of ϕ ( z ...
The smart BASIC for iOS naturally supports complex numbers in notation a + bi. Any variable, math operation or function can accept both real and complex numbers as arguments and return real or complex numbers depending on result. For example the square root of -4 is a complex number:
In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. [1] Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts ...