Search results
Results from the WOW.Com Content Network
The modulation index (or modulation depth) of a modulation scheme describes by how much the modulated variable of the carrier signal varies around its unmodulated level. It is defined differently in each modulation scheme. Amplitude modulation index; Frequency modulation index; Phase modulation index
For a sine wave modulation, the modulation index is seen to be the ratio of the peak frequency deviation of the carrier wave to the frequency of the modulating sine wave. If h ≪ 1 {\displaystyle h\ll 1} , the modulation is called narrowband FM (NFM), and its bandwidth is approximately 2 f m {\displaystyle 2f_{m}\,} .
Carrier wave - Wikipedia
Waterfall plot of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown. A carrier, frequency modulated by a 1,000 Hz sinusoid. The modulation index has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong ...
Single-sideband modulation with full carrier (e.g. as used by CHU) J: Single-sideband with suppressed carrier (e.g. Shortwave utility and amateur stations) K: Pulse-amplitude modulation: L: Pulse-width modulation (e.g. as used by WWVB) M: Pulse-position modulation: N: Unmodulated carrier (steady, single-frequency signal) P: Sequence of pulses ...
In MSK the difference between the higher and lower frequency is identical to half the bit rate. Consequently, the waveforms used to represent a 0 and a 1 bit differ by exactly half a carrier period. Thus, the maximum frequency deviation is δ = 0.5 f m where f m is the maximum modulating frequency. As a result, the modulation index m is 0.5 ...
is the peak frequency deviation; is the highest frequency in the modulating signal. For example, a typical VHF/UHF two-way radio signal using FM mode, [2] with 5 kHz peak deviation, and a maximum audio frequency of 3 kHz, would require an approximate bandwidth of 2 × (5 kHz + 3 kHz) = 16 kHz.
However, many modulation schemes make this simple approach impractical because most signal power is devoted to modulation—where the information is present—and not to the carrier frequency. Reducing the carrier power results in greater transmitter efficiency. Different methods must be employed to recover the carrier in these conditions.