Search results
Results from the WOW.Com Content Network
Parenchyma is a versatile ground tissue that generally constitutes the "filler" tissue in soft parts of plants. It forms, among other things, the cortex (outer region) and pith (central region) of stems, the cortex of roots, the mesophyll of leaves, the pulp of fruits, and the endosperm of seeds.
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]
In biology, tissue is an assembly of similar cells and their extracellular matrix from the same embryonic origin that together carry out a specific function. [1] [2] Tissues occupy a biological organizational level between cells and a complete organ. Accordingly, organs are formed by the functional grouping together of multiple tissues. [3]
Lung parenchyma showing damage due to large subpleural bullae. Parenchyma (/ p ə ˈ r ɛ ŋ k ɪ m ə /) [1] [2] is the bulk of functional substance in an animal organ or structure such as a tumour. In zoology, it is the tissue that fills the interior of flatworms. In botany, it is some layers in the cross-section of the leaf. [3]
In botany, a cortex is an outer layer of a stem or root in a vascular plant, lying below the epidermis but outside of the vascular bundles. [1] The cortex is composed mostly of large thin-walled parenchyma cells of the ground tissue system and shows little to no structural differentiation. [ 2 ]
The pericycle is a cylinder of parenchyma or sclerenchyma cells that lies just inside the endodermis and is the outer most part of the stele of plants. [ citation needed ] Although it is composed of non-vascular parenchyma cells, it's still considered part of the vascular cylinder because it arises from the procambium as do the vascular tissues ...
A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium.
They are typically 1 mm (0.039 in) in length and are thus named fiberlike sclereids. These sclereids permeate the mesophyll as a dense mat. [5] During sclerification these fiberlike sclereid cells can increase by several hundred times their original size, compared to other parenchyma cells that only increase by two or three times. [4]