Search results
Results from the WOW.Com Content Network
The basic Support Vector Machine (SVM) paradigm is trained using both positive and negative examples, however studies have shown there are many valid reasons for using only positive examples. When the SVM algorithm is modified to only use positive examples, the process is considered one-class classification. One situation where this type of ...
The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.
This is also true for image segmentation systems, including those using a modified version SVM that uses the privileged approach as suggested by Vapnik. [11] [12] Classification of satellite data like SAR data using supervised SVM. [13] Hand-written characters can be recognized using SVM. [14] [15]
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.