Search results
Results from the WOW.Com Content Network
The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.
In the Kirchhoff–Love plate theory for plates the governing equations are [1], = and , = In expanded form, + = ; + = and + + = where () is an applied transverse load per unit area, the thickness of the plate is =, the stresses are , and
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
A cantilever in a traditionally timber framed building is called a jetty or forebay. In the southern United States, a historic barn type is the cantilever barn of log construction. Temporary cantilevers are often used in construction. The partially constructed structure creates a cantilever, but the completed structure does not act as a cantilever.
Using this equation it is possible to calculate the bending stress at any point on the beam cross section regardless of moment orientation or cross-sectional shape. Note that M y , M z , I y , I z , I y z {\displaystyle M_{y},M_{z},I_{y},I_{z},I_{yz}} do not change from one point to another on the cross section.
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.
In general, exact solutions for cantilever plates using plate theory are quite involved and few exact solutions can be found in the literature. Reissner and Stein [ 7 ] provide a simplified theory for cantilever plates that is an improvement over older theories such as Saint-Venant plate theory.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.