Search results
Results from the WOW.Com Content Network
Special relativity is generally considered the solution to all negative aether drift (or isotropy of the speed of light) measurements, including the Michelson–Morley null result. Many high precision measurements have been conducted as tests of special relativity and modern searches for Lorentz violation in the photon , electron , nucleon , or ...
It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the ...
It was the negative result of a famous experiment, that required the introduction of length contraction: the Michelson–Morley experiment (and later also the Kennedy–Thorndike experiment). In special relativity its explanation is as follows: In its rest frame the interferometer can be regarded as at rest in accordance with the relativity ...
A big challenge for the Lorentz ether theory was the Michelson–Morley experiment in 1887. According to the theories of Fresnel and Lorentz, a relative motion to an immobile aether had to be determined by this experiment; however, the result was negative.
To clarify the situation, Michelson and Morley (1887) repeated Michelson's 1881 experiment, and they substantially increased the accuracy of the measurement. However, this now famous Michelson–Morley experiment again yielded a negative result, i.e., no motion of the apparatus through the aether was detected (although the Earth's velocity is ...
Michelson–Morley experiment: Albert A. Michelson and Edward W. Morley: Negative result Luminiferous aether: 1897 Thomson experiment: J. J. Thomson: Discovery Electron: 1901 Trouton–Noble experiment: Frederick Thomas Trouton and H. R. Noble. Negative result Luminiferous aether: 1905 Rubens tube: Heinrich Rubens: Demonstration Standing wave: 1908
In 1904 and 1905, Hendrik Lorentz and Henri Poincaré proposed a theory which explained the negative result of the Michelson-Morley experiment as being due to the effect of motion through the aether on the lengths of physical objects and the speed at which clocks ran. Due to motion through the aether objects would shrink along the direction of ...
As an example in physics, the results of the Michelson–Morley experiment were of this type, as it did not detect the expected velocity relative to the postulated luminiferous aether. This experiment's famous failed detection, commonly referred to as the null result , contributed to the development of special relativity .