enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duality gap - Wikipedia

    en.wikipedia.org/wiki/Duality_gap

    In optimization problems in applied mathematics, the duality gap is the difference between the primal and dual solutions. If is the optimal dual value and is the optimal primal value then the duality gap is equal to . This value is always greater than or equal to 0 (for minimization problems).

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.

  4. Perturbation function - Wikipedia

    en.wikipedia.org/wiki/Perturbation_function

    The duality gap is the difference of the right and left hand side of the inequality (,) (,),where is the convex conjugate in both variables. [3] [4]For any choice of perturbation function F weak duality holds.

  5. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The strong duality theorem further states that the duality gap is zero. With strong duality, the dual solution is, economically speaking, the "equilibrium price" (see shadow price) for the raw material that a factory with production matrix and raw material stock would accept for raw material, given the market price for finished goods .

  6. List of dualities - Wikipedia

    en.wikipedia.org/wiki/List_of_dualities

    In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.

  7. Strong duality - Wikipedia

    en.wikipedia.org/wiki/Strong_duality

    Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. By definition, strong duality holds if and only if the duality gap is equal to 0.

  8. Slater's condition - Wikipedia

    en.wikipedia.org/wiki/Slater's_condition

    In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. [1] Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).

  9. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Sufficiency: the solution pair , (,) satisfies the KKT conditions, thus is a Nash equilibrium, and therefore closes the duality gap. Necessity: any solution pair x ∗ , ( μ ∗ , λ ∗ ) {\displaystyle x^{*},(\mu ^{*},\lambda ^{*})} must close the duality gap, thus they must constitute a Nash equilibrium (since neither side could do any ...