Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
In 1953, the AEC sponsored a study to discover if radioactive iodine affected premature babies differently from full-term babies. In the experiment, researchers from Harper Hospital in Detroit orally administered iodine-131 to 65 premature and full-term infants who weighed from 2.1 to 5.5 pounds (0.95 to 2.49 kg). [68]
The radioactive iodine uptake test is a type of scan used in the diagnosis of thyroid problems, particularly hyperthyroidism. It is entirely different from radioactive iodine therapy (RAI therapy), which uses much higher doses to destroy cancerous cells. The RAIU test is also used as a follow-up to RAI therapy to verify that no thyroid cells ...
Because the thyroid gland can only absorb a limited amount of iodine, prophylactic administration of non-radioactive iodine may result in iodine blockade. Potassium iodide in tablet form (colloquially known as "iodine tablets") reduces the uptake of radioactive iodine into the thyroid by a factor of 90 or more, thus acting as a radioprotector ...
Only the Wolff–Chaikoff effect is helpful to prevent the thyroid from uptaking radioactive iodine in the case of nuclear emergencies. Therefore, "plummering" with high-dose iodine is only effective in a short time window after the release of radionuclides. [15] Wrong timing of iodine use may even increase the risk by triggering the Plummer ...
The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...
If a person consumes a dose of one of these chemical compounds, his or her thyroid may saturate with stable iodine, preventing accumulation of radioactive iodine found after a nuclear meltdown or explosion.
Iodine-131 (131 I) is the most common RNT worldwide and uses the simple compound sodium iodide with a radioactive isotope of iodine. The patient (human or animal) may ingest an oral solid or liquid amount or receive an intravenous injection of a solution of the compound. The iodide ion is selectively taken up by the thyroid gland.