Search results
Results from the WOW.Com Content Network
Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.
On March 24, 2011, Japanese officials announced that "radioactive iodine-131 exceeding safety limits for infants had been detected at 18 water-purification plants in Tokyo and five other prefectures". Officials said also that the fallout from the Dai-ichi plant is "hindering search efforts for victims from the March 11 earthquake and tsunami". [70]
The radiation effects from the Fukushima Daiichi nuclear disaster are the observed and predicted effects as a result of the release of radioactive isotopes from the Fukushima Daiichii Nuclear Power Plant following the 2011 TÅhoku 9.0 magnitude earthquake and tsunami (Great East Japan Earthquake and the resultant tsunami).
An accident at the Sosnovy Bor nuclear plant leaked radioactive iodine into the air through a ruptured fuel channel. February 20, 1996: Waterford, Connecticut, United States: Leaking valve forced shutdown of Millstone Nuclear Power Plant Units 1 and 2, multiple equipment failures found. 0: 254: September 2, 1996: Crystal River, Florida, United ...
Only the Wolff–Chaikoff effect is helpful to prevent the thyroid from uptaking radioactive iodine in the case of nuclear emergencies. Therefore, "plummering" with high-dose iodine is only effective in a short time window after the release of radionuclides. [15] Wrong timing of iodine use may even increase the risk by triggering the Plummer ...
Radioactive iodine, which can lead to increased risk of thyroid cancer if absorbed into the body, was released into the air along with other fission products. To counteract the radioactive iodine the distribution of potassium iodide is used, as it prevents the absorption of the potentially dangerous radioisotopes of that element.
As the longest-lived radioactive isotope ruthenium-106 has a half-life of only 373.59 days, it has been suggested that the ruthenium and palladium in PUREX raffinate should be used as a source of the metals after allowing the radioactive isotopes to decay. [4] [5] After ten half life cycles have passed over 99.96% of any radioisotope is stable ...
Unlike the Wolff–Chaikoff effect, the Plummer effect does not prevent the thyroid from taking up radioactive iodine, e.g. in the case of nuclear emergencies.Therefore, "plummering" with high-dose iodine is only effective in a short time window after the release of radionuclides. [9]