enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glossary of experimental design - Wikipedia

    en.wikipedia.org/.../Glossary_of_experimental_design

    Design Point: A single combination of settings for the independent variables of an experiment. A Design of Experiments will result in a set of design points, and each design point is designed to be executed one or more times, with the number of iterations based on the required statistical significance for the experiment.

  3. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    This is a workable experimental design, but purely from the point of view of statistical accuracy (ignoring any other factors), a better design would be to give each person one regular sole and one new sole, randomly assigning the two types to the left and right shoe of each volunteer. Such a design is called a "randomized complete block design."

  4. Statistical assumption - Wikipedia

    en.wikipedia.org/wiki/Statistical_assumption

    In the design-based approach, the model is taken to be known, and one of the goals is to ensure that the sample data are selected randomly enough for inference. Statistical assumptions can be put into two classes, depending upon which approach to inference is used.

  5. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1]

  6. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The statistical errors, on the other hand, are independent, and their sum within the random sample is almost surely not zero. One can standardize statistical errors (especially of a normal distribution ) in a z-score (or "standard score"), and standardize residuals in a t -statistic , or more generally studentized residuals .

  7. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    Since in a real experiment it is impossible to avoid all type I and type II errors, it is important to consider the amount of risk one is willing to take to falsely reject H 0 or accept H 0. The solution to this question would be to report the p-value or significance level α of the statistic.

  8. Restricted randomization - Wikipedia

    en.wikipedia.org/wiki/Restricted_randomization

    Consider a batch process that uses 7 monitor wafers in each run. The plan further calls for measuring a response variable on each wafer at each of 9 sites. The organization of the sampling plan has a hierarchical or nested structure: the batch run is the topmost level, the second level is an individual wafer, and the third level is the site on the wafer.

  9. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are "errors" in the sense in which that term is used in statistics; see errors and residuals in statistics.