Search results
Results from the WOW.Com Content Network
Susan assumes the stranger chose a fair coin (so the prior probability that the tossed coin is the unfair coin is 0). Consequently, Susan calculates the probability that three (or any number of consecutive heads) were tossed with the unfair coin must be 0; if still more heads are thrown, Susan does not change her probability.
For an event X that occurs with very low probability of 0.0000001%, or once in one billion trials, in any single sample (see also almost never), considering 1,000,000,000 as a "truly large" number of independent samples gives the probability of occurrence of X equal to 1 − 0.999999999 1000000000 ≈ 0.63 = 63% and a number of independent ...
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.
Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting conditional probabilities, allowing one to find the probability of a cause given its effect. [1]
The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. [1] These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. [2] There are several other (equivalent) approaches to formalising ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
Pretest probability refers to the chance that an individual in a given population has a disorder or condition; this is the baseline probability prior to the use of a diagnostic test. Post-test probability refers to the probability that a condition is truly present given a positive test result.