enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  3. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...

  4. Speeded up robust features - Wikipedia

    en.wikipedia.org/wiki/Speeded_up_robust_features

    In computer vision, speeded up robust features (SURF) is a local feature detector and descriptor, with patented applications. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction. It is partly inspired by the scale-invariant feature transform (SIFT) descriptor. The standard version of ...

  5. Features from accelerated segment test - Wikipedia

    en.wikipedia.org/wiki/Features_from_accelerated...

    Features from accelerated segment test (FAST) is a corner detection method, which could be used to extract feature points and later used to track and map objects in many computer vision tasks. The FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and was published in 2006. [ 1 ]

  6. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Connected-component labeling (CCL), connected-component analysis (CCA), blob extraction, region labeling, blob discovery, or region extraction is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled based on a given heuristic. Connected-component labeling is not to be confused with segmentation.

  7. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    Geometric feature learning methods extract distinctive geometric features from images. Geometric features are features of objects constructed by a set of geometric elements like points, lines, curves or surfaces. These features can be corner features, edge features, Blobs, Ridges, salient points image texture and so on, which can be detected by ...

  8. Image registration - Wikipedia

    en.wikipedia.org/wiki/Image_registration

    Image registration or image alignment algorithms can be classified into intensity-based and feature-based. [3] One of the images is referred to as the moving or source and the others are referred to as the target, fixed or sensed images. Image registration involves spatially transforming the source/moving image(s) to align with the target image.

  9. Oriented FAST and rotated BRIEF - Wikipedia

    en.wikipedia.org/wiki/Oriented_FAST_and_rotated...

    Oriented FAST and rotated BRIEF (ORB) is a fast robust local feature detector, first presented by Ethan Rublee et al. in 2011, [1] that can be used in computer vision tasks like object recognition or 3D reconstruction.