Search results
Results from the WOW.Com Content Network
While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions: More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The term precision in this sense ("mensura praecisionis observationum") first appeared in the works of Gauss (1809) "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" (page 212). Gauss's definition differs from the modern one by a factor of .
In computer science, the precision of a numerical quantity is a measure of the detail in which the quantity is expressed. This is usually measured in bits, but sometimes in decimal digits. It is related to precision in mathematics, which describes the number of digits that are used to express a value. Some of the standardized precision formats are:
The convenient and intuitively understood term specificity in this research area has been frequently used with the mathematical formula for precision and recall as defined in biostatistics. The pair of thus defined specificity (as positive predictive value) and sensitivity (true positive rate) represent major parameters characterizing the ...
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
Ulugh Beg's meridian arc for precise astronomical measurements (15th c.). The exact sciences or quantitative sciences, sometimes called the exact mathematical sciences, [1] are those sciences "which admit of absolute precision in their results"; especially the mathematical sciences. [2]