Search results
Results from the WOW.Com Content Network
The voltage phase shift is given by [5]: 275 = where Z 0 is the characteristic impedance of the line; X is the susceptance of the inductance or capacitance, given respectively by ωL or −1 ⁄ ωC; L and C are, respectively, inductance and capacitance, and; ω is the angular frequency.
The phase shift of the reflected wave on total internal reflection can similarly be obtained from the phase angles of r p and r s (whose magnitudes are unity in this case). These phase shifts are different for s and p waves, which is the well-known principle by which total internal reflection is used to effect polarization transformations .
The RB arriving at detector 2 will have undergone a phase shift of (0.5 × wavelength + 2k) due to one front-surface reflection and two transmissions. The SB arriving at detector 2 will have undergone a (1 × wavelength + 2k) phase shift due to two front-surface reflections, one rear-surface reflection. Therefore, when there is no sample, only ...
The 'south'-direction x-axis is depicted but the 'north'-direction x-axis is not. (As in physics, ρ is often used instead of r to avoid confusion with the value r in cylindrical and 2D polar coordinates.) According to the conventions of geographical coordinate systems, positions are measured by latitude, longitude, and height (altitude).
The Bode phase plot is the graph of the phase, commonly expressed in degrees, of the argument function ((=)) as a function of . The phase is plotted on the same logarithmic ω {\displaystyle \omega } -axis as the magnitude plot, but the value for the phase is plotted on a linear vertical axis.
The aspect ratio of the resulting ellipse is a function of the phase shift between the input and output, with an aspect ratio of 1 (perfect circle) corresponding to a phase shift of ±90° and an aspect ratio of ∞ (a line) corresponding to a phase shift of 0° or 180°. [citation needed]
And in functional analysis, when x is a linear function of some variable, such as time, these components are sinusoids, and they are orthogonal functions. A phase-shift of x → x + π /2 changes the identity to: cos(x + φ) = cos(x) cos(φ) + cos(x + π /2) sin(φ), in which case cos(x) cos(φ) is the in-phase component.
Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [ 2 ] When the phase difference φ ( t ) {\displaystyle \varphi (t)} is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2 ), sinusoidal signals are sometimes said to be in quadrature , e.g., in-phase and quadrature components of a ...