enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  3. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    The radius of each of the three Malfatti circles may be determined as a formula involving the three side lengths a, b, and c of the triangle, the inradius r, the semiperimeter = (+ +) /, and the three distances d, e, and f from the incenter of the triangle to the vertices opposite sides a, b, and c respectively.

  4. Angular defect - Wikipedia

    en.wikipedia.org/wiki/Angular_defect

    The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°.

  5. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    For four or more points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: each of the two possible triangulations that split the quadrangle into two triangles satisfies the "Delaunay condition", i.e., the requirement that the circumcircles of all triangles have empty interiors.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle, and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  7. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Geodesic subdivisions can also be done from an augmented dodecahedron, dividing pentagons into triangles with a center point, and subdividing from that Chiral polyhedra with higher order polygonal faces can be augmented with central points and new triangle faces.

  8. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In all the formulas stated below the sides a, b, and c must be measured in absolute length, a unit so that the Gaussian curvature K of the plane is −1. In other words, the quantity R in the paragraph above is supposed to be equal to 1. Trigonometric formulas for hyperbolic triangles depend on the hyperbolic functions sinh, cosh, and tanh.

  9. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.