Search results
Results from the WOW.Com Content Network
The Goertzel algorithm is a technique in digital signal processing (DSP) for efficient evaluation of the individual terms of the discrete Fourier transform (DFT). It is useful in certain practical applications, such as recognition of dual-tone multi-frequency signaling (DTMF) tones produced by the push buttons of the keypad of a traditional analog telephone.
Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses aliasing to an acceptable level. In this application, the filter is called an anti-aliasing filter, and its design is
Often, this is done by adding analog anti-aliasing filters at the input and output, thus avoiding any frequency component above the Nyquist frequency. The complexity (i.e., steepness) of such filters depends on the required signal-to-noise ratio and the ratio between the sampling rate and the highest frequency of the signal.
Effects of aliasing, blurring, and sharpening may be adjusted with digital filtering implemented in software, which necessarily follows the theoretical principles. A family of sinusoids at the critical frequency, all having the same sample sequences of alternating +1 and –1.
Range aliasing occurs when reflections arrive from distances that exceed the distance between transmit pulses at a specific pulse repetition frequency (PRF). Range ambiguity resolution is required to obtain the true range when the measurements are made using a system where the following inequality is true.
A typical choice of characteristic frequency is the sampling rate that is used to create the digital signal from a continuous one. The normalized quantity, f ′ = f f s , {\displaystyle f'={\tfrac {f}{f_{s}}},} has the unit cycle per sample regardless of whether the original signal is a function of time or distance.
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
The Nyquist aliasing criteria is expressed graphically in the z-plane by the x-axis, where ωnT = π. The line of constant damping just described spirals in indefinitely but in sampled data systems, frequency content is aliased down to lower frequencies by integral multiples of the Nyquist frequency.