Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...
A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...
Let A and B be two Hermitian matrices of order n. We say that A ≥ B if A − B is positive semi-definite. Similarly, we say that A > B if A − B is positive definite. Although it is commonly discussed on matrices (as a finite-dimensional case), the Loewner order is also well-defined on operators (an infinite-dimensional case) in the ...
Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint, in which case similar definitions apply, but we discuss ...
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
Equivalently, it is the number of involutions of an n-element set with precisely k fixed points, or in other words, the number of matchings in the complete graph on n vertices that leave k vertices uncovered (indeed, the Hermite polynomials are the matching polynomials of these graphs).