enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.

  3. Mean curvature flow - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature_flow

    In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space).

  4. List of differential geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_differential...

    Chern class; Pontrjagin class; spin structure; differentiable map. submersion; immersion; Embedding. Whitney embedding theorem; Critical value. Sard's theorem; Saddle point; Morse theory; Lie derivative; Hairy ball theorem; Poincaré–Hopf theorem; Stokes' theorem; De Rham cohomology; Sphere eversion; Frobenius theorem (differential topology ...

  5. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Given any curve c : (a, b) → S, one may consider the composition X ∘ c : (a, b) → ℝ 3. As a map between Euclidean spaces, it can be differentiated at any input value to get an element (X ∘ c)′(t) of ℝ 3. The orthogonal projection of this vector onto T c(t) S defines the covariant derivative ∇ c ′(t) X.

  7. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  8. Pullback (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(differential...

    More generally, any covariant tensor field – in particular any differential form – on may be pulled back to using . When the map ϕ {\displaystyle \phi } is a diffeomorphism , then the pullback, together with the pushforward , can be used to transform any tensor field from N {\displaystyle N} to M {\displaystyle M} or vice versa.

  9. G-structure on a manifold - Wikipedia

    en.wikipedia.org/wiki/G-structure_on_a_manifold

    In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.