Search results
Results from the WOW.Com Content Network
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
The number x is called a normal number (or sometimes an absolutely normal number) if it is normal in base b for every integer b greater than 1. [ 7 ] [ 8 ] A given infinite sequence is either normal or not normal, whereas a real number, having a different base- b expansion for each integer b ≥ 2 , may be normal in one base but not in another ...
[2] [3] Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the ...
The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2. The binomial distribution, which describes the number of successes in a series of independent Yes/No experiments all with the same probability of success.
For p = 0 the limiting values are 0 0 = 0 and a 0 = 0 or a ≠ 0, so the difference becomes simply equality, so the 0-norm counts the number of unequal points. For p = ∞ the largest number dominates, and thus the ∞-norm is the maximum difference.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...
A special case is the discrete distribution of a random variable that can take on only one fixed value; in other words, it is a deterministic distribution. Expressed formally, the random variable X {\displaystyle X} has a one-point distribution if it has a possible outcome x {\displaystyle x} such that P ( X = x ) = 1. {\displaystyle P(X{=}x)=1 ...
An estimate of the standard deviation for N > 100 data taken to be approximately normal follows from the heuristic that 95% of the area under the normal curve lies roughly two standard deviations to either side of the mean, so that, with 95% probability the total range of values R represents four standard deviations so that s ≈ R/4.