Search results
Results from the WOW.Com Content Network
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the ...
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
The generality is extended when and are linear operations on the set of potential differences and on the set of branch currents (respectively) since linear operations don't affect KVL and KCL. For instance, the linear operation may be the average or the Laplace transform .
Nor are all the branch currents independent from each other. The minimum number of branch currents required for a complete solution is l. This is a consequence of the fact that a tree has l links removed and there can be no currents in a tree. Since the remaining branches of the tree have zero current they cannot be independent of the link ...
Solving for mesh currents instead of directly applying Kirchhoff's current law and Kirchhoff's voltage law can greatly reduce the amount of calculation required. This is because there are fewer mesh currents than there are physical branch currents. In figure 2 for example, there are six branch currents but only three mesh currents.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
When X L equals X C, the two branch currents are equal and opposite. They cancel each other out to give minimal current in the main line (in principle, for a finite voltage V, there is zero current). Since total current in the main line is minimal, in this state the total impedance is maximal.