Search results
Results from the WOW.Com Content Network
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS) and are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling.
The anticipation of most types of rewards increases the level of dopamine in the brain, [4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release. [5] Other brain dopamine pathways are involved in motor control and in controlling the release of various
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.
Dopamine β-hydroxylase inhibitors like disulfiram (Antabuse), which can be used in the treatment of addiction to cocaine and similar dopaminergic drugs as a deterrent drug. The excess dopamine resulting from inhibition of the dopamine β-hydroxylase enzyme increases unpleasant symptoms such as anxiety, higher blood pressure, and restlessness.
Substance dependence, also known as drug dependence, is a biopsychological situation whereby an individual's functionality is dependent on the necessitated re-consumption of a psychoactive substance because of an adaptive state that has developed within the individual from psychoactive substance consumption that results in the experience of withdrawal and that necessitates the re-consumption ...
Amphetamine, an NDRA and one of the most well-known DRAs. 4-Methylaminorex (4-MAR), the cis- isomer being one of the most dopamine-selective NDRAs known.. A dopamine releasing agent (DRA) is a type of drug which induces the release of dopamine in the body and/or brain.
Similar to other abused substances, opioid drugs increase dopamine release in the nucleus accumbens. [1] Opioids are more likely to produce physical dependence worse than that of other classes of psychoactive drugs, and can lead to painful withdrawal symptoms if discontinued abruptly after regular use.
Psychoactive drugs operate by temporarily affecting a person's neurochemistry, which in turn causes changes in a person's mood, cognition, perception and behavior. There are many ways in which psychoactive drugs can affect the brain. Each drug has a specific action on one or more neurotransmitter or neuroreceptor in the brain.