Search results
Results from the WOW.Com Content Network
Starting from the graph of f, a horizontal translation means composing f with a function , for some constant number a, resulting in a graph consisting of points (, ()) . Each point ( x , y ) {\displaystyle (x,y)} of the original graph corresponds to the point ( x + a , y ) {\displaystyle (x+a,y)} in the new graph ...
Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis. To represent affine transformations with matrices, we can use homogeneous coordinates. This means representing a 2-vector (x, y) as a 3-vector (x, y, 1), and similarly for higher dimensions. Using this system, translation can be expressed with ...
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
Combining two equal glide plane operations gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group. In the case of glide-reflection symmetry, the symmetry group of an object contains a glide reflection and the group generated by it. For ...
For instance, the Pythagorean theorem has been illustrated with shear mapping [3] as well as the related geometric mean theorem. Shear matrices are often used in computer graphics. [4] [5] [6] An algorithm due to Alan W. Paeth uses a sequence of three shear mappings (horizontal, vertical, then horizontal again) to rotate a digital image by an ...
The six degrees of freedom of a mobile unit are divided in two motional classes as described below. Translational envelopes: Moving forward and backward on the X-axis. (Surge) Moving left and right on the Y-axis. (Sway) Moving up and down on the Z-axis. (Heave) Rotational envelopes: Tilting side to side on the X-axis.