Search results
Results from the WOW.Com Content Network
Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.
Also, the decimal point is not included on whole numbers. x, X: unsigned int as a hexadecimal number. x uses lower-case letters and X uses upper-case. o: unsigned int in octal. s: null-terminated string. c: char . p: void* (pointer to void) in an implementation-defined format. a, A: double in hexadecimal notation, starting with 0x or 0X.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Intersection types are useful for describing overloaded function types: for example, if "int → int" is the type of functions taking an integer argument and returning an integer, and "float → float" is the type of functions taking a float argument and returning a float, then the intersection of these two types can be used to describe ...
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
DECIMAL_DIG (C99) – minimum number of decimal digits such that any number of the widest supported floating-point type can be represented in decimal with a precision of DECIMAL_DIG digits and read back in the original floating-point type without changing its value.