enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  3. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable. If Y, B, and U were column vectors, the matrix equation above would represent multiple linear regression.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Quantile regression focuses on the conditional quantiles of y given X rather than the conditional mean of y given X. Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors.

  6. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x = x 0 depends strongly on data values with x far from x 0. [9] In modern statistics, polynomial basis-functions are used along with new basis functions, such as splines, radial basis functions, and wavelets. These ...

  7. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  8. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Log–log_plot

    The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.

  9. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Special cases of the sigmoid function include the Gompertz curve (used in modeling systems that saturate at large values of x) and the ogee curve (used in the spillway of some dams). Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most ...