Search results
Results from the WOW.Com Content Network
Over time, the process tends to drift towards its mean function: such a process is called mean-reverting. The process can be considered to be a modification of the random walk in continuous time, or Wiener process, in which the properties of the process have been changed so that there is a tendency of the walk to move back towards a central ...
In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...
The definition of a stochastic process varies, [67] but a stochastic process is traditionally defined as a collection of random variables indexed by some set. [68] [69] The terms random process and stochastic process are considered synonyms and are used interchangeably, without the index set being precisely specified.
In the case =, [2] the Feller square-root process can be obtained from the square of an Ornstein–Uhlenbeck process. It is ergodic and possesses a stationary distribution. It is used in the Heston model to model stochastic volatility.
Vasicek's model was the first one to capture mean reversion, an essential characteristic of the interest rate that sets it apart from other financial prices. Thus, as opposed to stock prices for instance, interest rates cannot rise indefinitely. This is because at very high levels they would hamper economic activity, prompting a decrease in ...
Following are the one-factor models, where a single stochastic factor – the short rate – determines the future evolution of all interest rates. Other than Rendleman–Bartter and Ho–Lee, which do not capture the mean reversion of interest rates, these models can be thought of as specific cases of Ornstein–Uhlenbeck processes.
In the case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. With a deterministic trend, the process is called trend-stationary , and shocks have only transitory effects, with the variable tending towards a deterministically evolving mean.
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. [1] It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.