enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a prime number has only 1 and itself as divisors; that is, d(n) = 2; a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n.

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.

  4. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...

  5. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  6. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime

  8. Mathematicians Discovered Something Mind-Blowing About the ...

    www.aol.com/lifestyle/mathematicians-discovered...

    The simple number solves a notoriously complicated problem. The simple number solves a notoriously complicated problem. Skip to main content. 24/7 Help. For premium support please call: 800 ...

  9. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are: