Search results
Results from the WOW.Com Content Network
Here () denotes the sum of the base-digits of , and the exponent given by this formula can also be interpreted in advanced mathematics as the p-adic valuation of the factorial. [54] Applying Legendre's formula to the product formula for binomial coefficients produces Kummer's theorem , a similar result on the exponent of each prime in the ...
There is also a connection formula for the ratio of two rising factorials given by () = (+) (),. Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [11] (p 52)
Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .
2.2 Exponential function 2.3 Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship 2.4 Modified-factorial denominators
The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent ...
Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(x)).
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
The exponential factorials grow much more quickly than regular factorials or even hyperfactorials. The number of digits in the exponential factorial of 6 is approximately 5 × 10 183 230 . The sum of the reciprocals of the exponential factorials from 1 onwards is the following transcendental number :