Search results
Results from the WOW.Com Content Network
Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.
Citrate ion Malate ion. The citrate-malate shuttle is a series of chemical reactions, commonly referred to as a biochemical cycle or system, that transports acetyl-CoA in the mitochondrial matrix across the inner and outer mitochondrial membranes for fatty acid synthesis. [1]
The two main systems in humans are the glycerol phosphate shuttle and the malate-aspartate shuttle. The malate/a-ketoglutarate antiporter functions move electrons while the aspartate/glutamate antiporter moves amino groups. This allows the mitochondria to receive the substrates that it needs for its functionality in an efficient manner. [1]
The glycerol phosphate shuttle was first characterized as a major route of mitochondrial hydride transport in the flight muscles of blow flies. [5] [6] It was initially believed that the system would be inactive in mammals due to the predominance of lactate dehydrogenase activity over glycerol-3-phosphate dehydrogenase 1 (GPD1) [5] [7] until high GPD1 and GPD2 activity were demonstrated in ...
The All-Clad Factory Seconds Sale just started: Get up to 73% off All-Clad cookware
1.2 Recruited reaction steps of the citric acid cycle and malate aspartate shuttle 1.3 Reaction steps from malate to pyruvate and lactate 2 Intracellular compartmentalization of the glutaminolytic pathway
The latest issue of Hello! magazine describes Melania Trump as someone who has "grown in confidence" and now has "newfound authority" during her second stint in the White House as first lady.
WASHINGTON (Reuters) -U.S. President Donald Trump said on Tuesday the United Nations has "great potential" but has to "get their act together," as he stopped U.S. engagement with the U.N. Human ...