Search results
Results from the WOW.Com Content Network
Venn diagram of . Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one is true, one is false).
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Venn diagram of information theoretic measures for three variables x, y, and z. Each circle represents an individual entropy : H ( x ) {\displaystyle H(x)} is the lower left circle, H ( y ) {\displaystyle H(y)} the lower right, and H ( z ) {\displaystyle H(z)} is the upper circle.
Some of these are listed below. In the list, a, b, and c refer to natural numbers, and r and s are real numbers. Natural numbers are used for counting. A blackboard bold capital N often represents this set. Integers appear as solutions for x in equations like x + a = b.
This solution negates circular waiting by assigning a partial order to the resources (the forks, in this case), and establishes the convention that all resources will be requested in order, and that no two resources unrelated by order will ever be used by a single unit of work at the same time. Here, the resources (forks) will be numbered 1 ...
Assume that the combined system determined by two random variables and has joint entropy (,), that is, we need (,) bits of information on average to describe its exact state. Now if we first learn the value of X {\displaystyle X} , we have gained H ( X ) {\displaystyle \mathrm {H} (X)} bits of information.
In set theory the Venn diagrams tell, that there is an element in one of the red intersections. (The existential quantifications for the red intersections are combined by or. They can be combined by the exclusive or as well.) Relations like subset and implication, arranged in the same kind of matrix as above. In set theory the Venn diagrams tell,