Search results
Results from the WOW.Com Content Network
The number N is called the order of the projective plane. The projective plane of order 2 is called the Fano plane. See also the article on finite geometry. Using the vector space construction with finite fields there exists a projective plane of order N = p n, for each prime power p n. In fact, for all known finite projective planes, the order ...
If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to isomorphism). In general, the projective plane of order n has n 2 + n + 1 points and the same number of lines; each line ...
The order of a finite projective plane is n = k – 1, that is, one less than the number of points on a line. All known projective planes have orders that are prime powers. A projective plane of order n is an ((n 2 + n + 1) n + 1) configuration. The smallest projective plane has order two and is known as the Fano plane.
The quotient map from the sphere onto the real projective plane is in fact a two sheeted (i.e. two-to-one) covering map. It follows that the fundamental group of the real projective plane is the cyclic group of order 2; i.e., integers modulo 2.
As of 2007, "36 of them exist as finite groups. Between 7 and 12 exist as finite projective planes, and either 14 or 15 exist as infinite projective planes." [4] Other classification schemes exist. One of the simplest is based on special types of planar ternary ring (PTR) that can be used to
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]
The theorem, for example, rules out the existence of projective planes of orders 6 and 14 but allows the existence of planes of orders 10 and 12. Since a projective plane of order 10 has been shown not to exist using a combination of coding theory and large-scale computer search, [1] the condition of the theorem is evidently not sufficient for ...
Projective geometry was instrumental in the validation of speculations of Lobachevski and Bolyai concerning hyperbolic geometry by providing models for the hyperbolic plane: [12] for example, the Poincaré disc model where generalised circles perpendicular to the unit circle correspond to "hyperbolic lines" , and the "translations" of this ...