Search results
Results from the WOW.Com Content Network
A satellite image of circular fields characteristic of center pivot irrigation, Kansas Farmland with circular pivot irrigation. Center-pivot irrigation (sometimes called central pivot irrigation), also called water-wheel and circle irrigation, is a method of crop irrigation in which equipment rotates around a pivot and crops are watered with sprinklers.
Mesoamericans tended to add a second base-5 system to create a modified base-20 system. A base-5 system has been used in many cultures for counting. Plainly it is based on the number of digits on a human hand. It may also be regarded as a sub-base of other bases, such as base-10, base-20, and base-60.
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by 3 digits. We proceed with the usual addition method: The following example is decimal, which simply means the base is 10. 123456.7 = 1.234567 × 10 5 101.7654 = 1.017654 × 10 2 = 0. ...
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
This second one gives the value of π as 3.1415926535, while the first only brings it to the second five. Indeed, many published poems use truncation instead of one of the several roundings , [ citation needed ] thereby producing a less-accurate result when the first omitted digit is greater than or equal to five.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
Shifting the second operand into position, as , gives it a fourth digit after the binary point. This creates the need to add an extra digit to the first operand—a guard digit—putting the subtraction into the form 2 1 × 0.1000 2 − 2 1 × 0.0111 2 {\displaystyle 2^{1}\times 0.1000_{2}-2^{1}\times 0.0111_{2}} .
Because in a continuous function, the function for a sphere is the function for a circle with the radius dependent on z (or whatever the third variable is), it stands to reason that the algorithm for a discrete sphere would also rely on the midpoint circle algorithm. But when looking at a sphere, the integer radius of some adjacent circles is ...