enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulse-width modulation - Wikipedia

    en.wikipedia.org/wiki/Pulse-width_modulation

    The PWM switching frequency can vary greatly depending on load and application. For example, switching only has to be done several times a minute in an electric stove; 100 or 120 Hz (double of the utility frequency ) in a lamp dimmer ; between a few kilohertz (kHz) and tens of kHz for a motor drive; and well into the tens or hundreds of kHz in ...

  3. Servo control - Wikipedia

    en.wikipedia.org/wiki/Servo_control

    Servo and receiver connections A diagram showing typical PWM timing for a servomotor. Servo control is a method of controlling many types of RC/hobbyist servos by sending the servo a PWM (pulse-width modulation) signal, a series of repeating pulses of variable width where either the width of the pulse (most common modern hobby servos) or the duty cycle of a pulse train (less common today ...

  4. Random pulse-width modulation - Wikipedia

    en.wikipedia.org/wiki/Random_pulse-width_modulation

    In RPWM, one of the switching parameters of the PWM signal, such as switching frequency, pulse position and duty cycle are varied randomly in order to spread the energy of the PWM signal. Hence, depending on the parameter which is made random, RPWM can be classified as random frequency modulation (RFM), random pulse-position modulation (RPPM ...

  5. Pulse compression - Wikipedia

    en.wikipedia.org/wiki/Pulse_compression

    The advantages [4] of the Barker codes are their simplicity (as indicated above, a de-phasing is a simple sign change), but the pulse compression ratio is lower than in the chirp case and the compression is very sensitive to frequency changes due to the Doppler effect if that change is larger than .

  6. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  7. Voltage-controlled oscillator - Wikipedia

    en.wikipedia.org/wiki/Voltage-controlled_oscillator

    For low-frequency VCOs, other methods of varying the frequency (such as altering the charging rate of a capacitor by means of a voltage-controlled current source) are used (see function generator). The frequency of a ring oscillator is controlled by varying either the supply voltage, the current available to each inverter stage, or the ...

  8. Pulse-density modulation - Wikipedia

    en.wikipedia.org/wiki/Pulse-density_modulation

    Pulse-width modulation (PWM) is a special case of PDM where the switching frequency is fixed and all the pulses corresponding to one sample are contiguous in the digital signal. The method for demodulation to an analogue signal remains the same, but the representation of a 50% signal with a resolution of 8-bits, a PWM waveform will turn on for ...

  9. Pulse-frequency modulation - Wikipedia

    en.wikipedia.org/wiki/Pulse-frequency_modulation

    Pulse-frequency modulation (PFM) is a modulation method for representing an analog signal using only two levels (1 and 0). It is analogous to pulse-width modulation (PWM), in which the magnitude of an analog signal is encoded in the duty cycle of a square wave .