enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    where + (forward rate constant), (reverse rate constant), and (catalytic rate constant) denote the rate constants, [14] the double arrows between A (substrate) and EA (enzyme-substrate complex) represent the fact that enzyme-substrate binding is a reversible process, and the single forward arrow represents the formation of P (product).

  4. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The common form of the inhibitory term also obscures the relationship between the inhibitor binding to the enzyme and its relationship to any other binding term be it the Michaelis–Menten equation or a dose response curve associated with ligand receptor binding. To demonstrate the relationship the following rearrangement can be made:

  5. Hill equation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Hill_equation_(biochemistry)

    where k is the maximal transcription rate of gene X. Likewise, if the production of protein from gene Y is down-regulated (repressed) by a transcription factor Z, then the rate of production of protein Y can be modeled as a differential equation in terms of the concentration of activated Z protein:

  6. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  7. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  8. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    The rate of diffusion of A, N A, depend on concentration gradient and the average velocity with which the molecules of A moves in the x direction. This relationship is expressed by Fick's law N A = − D A B d C A d x {\displaystyle N_{A}=-D_{AB}{\frac {dC_{A}}{dx}}} (only applicable for no bulk motion)

  9. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    For example, oxytocin has a half-life of typically about three minutes in the blood when given intravenously. Peripherally administered (e.g. intravenous) peptides like oxytocin cross the blood-brain-barrier very poorly, although very small amounts (< 1%) do appear to enter the central nervous system in humans when given via this route. [ 31 ]