Search results
Results from the WOW.Com Content Network
The condition number is a property of the problem. Paired with the problem are any number of algorithms that can be used to solve the problem, that is, to calculate the solution. Some algorithms have a property called backward stability; in general, a backward stable algorithm can be expected to accurately solve well-conditioned problems ...
Primality Testing for Beginners is an undergraduate-level mathematics book on primality tests, methods for testing whether a given number is a prime number, centered on the AKS primality test, the first method to solve this problem in polynomial time.
[2] [3] Coding interviews test candidates' technical knowledge, coding ability, problem solving skills, and creativity, typically on a whiteboard. Candidates usually have a degree in computer science, information science, computer engineering or electrical engineering, and are asked to solve programming problems, algorithms, or puzzles.
In mathematics, polynomial identity testing (PIT) is the problem of efficiently determining whether two multivariate polynomials are identical. More formally, a PIT algorithm is given an arithmetic circuit that computes a polynomial p in a field , and decides whether p is the zero polynomial.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
Just as the strong test checks for the existence of more than two square roots of 1 modulo n, two such tests can sometimes check for the existence of more than two square roots of −1. Suppose that, in the course of our probable prime tests, we come across two bases a and a ′ for which a 2 r d ≡ a ′ 2 r ′ d ≡ − 1 ( mod n ...
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.