Search results
Results from the WOW.Com Content Network
The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint.
In genetics, imputation is the statistical inference of unobserved genotypes. [1] It is achieved by using known haplotypes in a population, for instance from the HapMap or the 1000 Genomes Project in humans, thereby allowing to test for association between a trait of interest (e.g. a disease) and experimentally untyped genetic variants, but whose genotypes have been statistically inferred ...
For example, to complete the Human Genome Project, most of the human genome was sequenced at 12X or greater coverage; that is, each base in the final sequence was present on average in 12 different reads. Even so, current methods have failed to isolate or assemble reliable sequence for approximately 1% of the (euchromatic) human genome, as of 2004.
When printed, the human genome sequence fills around 100 huge books of close print. Genome projects are scientific endeavours that ultimately aim to determine the complete genome sequence of an organism (be it an animal, a plant, a fungus, a bacterium, an archaean, a protist or a virus) and to annotate protein-coding genes and other important genome-encoded features. [1]
Human Genome Project (HGP) [4] is a research project conducted by universities and research centers throughout six countries with the primary goal of determining the complete sequence of bases of the entire human genome and identifying the complete set of human genes. This project also stored the genetic information in public databases and had ...
The human genome consists of approximately 3 billion DNA base pairs and is estimated to carry around 20,000 protein coding genes. In designing the study the consortium needed to address several critical issues regarding the project metrics such as technology challenges, data quality standards and sequence coverage. [15]
In October 2004, NHGRI introduced the first in a series of '$1,000 Genome' grants designed to advance "the development of breakthrough technologies that will enable a human-sized genome to be sequenced for $1,000 or less." [9] In a January 2006 article in Scientific American making the case for the Personal Genome Project, George M. Church wrote
The Human Genome Project, a multinational effort to sequence the human genome, generated vast quantities of data about the genetic make-up of humans and other organisms. But, in some respects, even more remarkable than the impressive quantity of data generated by the Human Genome Project is the speed at which that data has been released to the ...