Search results
Results from the WOW.Com Content Network
There are no mirror reflection (m) operations for the dichromatic triangle, as there would be if all the smaller component triangles were coloured white. However, by introducing the anti-mirror reflection (m') operation the full dihedral D3 symmetry is restored. The six operations making up the dichromatic D3 (3m') point group are: identity (e)
In geometry, the mirror image of an object or two-dimensional figure is the virtual image formed by reflection in a plane mirror; it is of the same size as the original object, yet different, unless the object or figure has reflection symmetry (also known as a P-symmetry).
The second meaning of dichroic refers to the property of a material, in which light in different polarization states traveling through it experiences a different absorption coefficient; this is also known as diattenuation.
A dichromatic color space can be defined by only two primary colors. When these primary colors are also the unique hues, then the color space contains the individuals entire gamut. In dichromacy, the unique hues can be evoked by exciting only a single cone at a time, e.g. monochromatic light near the extremes of the visible spectrum.
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...
A general definition of chirality based on group theory exists. [2] It does not refer to any orientation concept: an isometry is direct if and only if it is a product of squares of isometries, and if not, it is an indirect isometry. The resulting chirality definition works in spacetime. [3] [4]
In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometric objects called Calabi–Yau manifolds.The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory.
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.