enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of lemmas - Wikipedia

    en.wikipedia.org/wiki/List_of_lemmas

    Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma

  3. Tucker's lemma - Wikipedia

    en.wikipedia.org/wiki/Tucker's_lemma

    In this example, where n=2, the red 1-simplex has vertices which are labelled by the same number with opposite signs. Tucker's lemma states that for such a triangulation at least one such 1-simplex must exist. In mathematics, Tucker's lemma is a combinatorial analog of the Borsuk–Ulam theorem, named after Albert W. Tucker.

  4. Lemma (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lemma_(mathematics)

    In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".

  5. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  6. Thom's first isotopy lemma - Wikipedia

    en.wikipedia.org/wiki/Thom's_first_isotopy_lemma

    The lemma is also valid for the stratification that satisfies Bekka's condition (C), which is weaker than Whitney's condition (B). [5] (The significance of this is that the consequences of the first isotopy lemma cannot imply Whitney’s condition (B).) Thom's second isotopy lemma is a family version of the first isotopy lemma.

  7. Lifting-the-exponent lemma - Wikipedia

    en.wikipedia.org/wiki/Lifting-the-exponent_lemma

    In elementary number theory, the lifting-the-exponent lemma (LTE lemma) provides several formulas for computing the p-adic valuation of special forms of integers. The lemma is named as such because it describes the steps necessary to "lift" the exponent of p {\displaystyle p} in such expressions.

  8. Schreier refinement theorem - Wikipedia

    en.wikipedia.org/wiki/Schreier_refinement_theorem

    The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma. Baumslag (2006) gives a short proof by intersecting the terms in one subnormal series with those in the other series.

  9. Titu's lemma - Wikipedia

    en.wikipedia.org/wiki/Titu's_Lemma

    In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...