Search results
Results from the WOW.Com Content Network
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
Louis Carl Heinrich Friedrich Paschen (22 January 1865 – 25 February 1947) was a German physicist, known for his work on electrical discharges. He is also known for the Paschen series , a series of hydrogen spectral lines in the infrared region that he first observed in 1908.
Paschen-Back effect, the splitting of atomic energy levels in the presence of a strong magnetic field Paschen series, a Hydrogen spectral series in the infrared band Paschen's law , an equation that gives the breakdown voltage, that is the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of ...
In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser ...
The plasma is sustained and maintained by inductive coupling from electrical coils at megahertz frequencies. The source temperature is in the range from 6000 to 10,000 K. The intensity of the emissions from various wavelengths of light are proportional to the concentrations of the elements within the sample.