Search results
Results from the WOW.Com Content Network
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
Louis Carl Heinrich Friedrich Paschen (22 January 1865 – 25 February 1947) was a German physicist, known for his work on electrical discharges. He is also known for the Paschen series , a series of hydrogen spectral lines in the infrared region that he first observed in 1908.
Paschen-Back effect, the splitting of atomic energy levels in the presence of a strong magnetic field Paschen series, a Hydrogen spectral series in the infrared band Paschen's law , an equation that gives the breakdown voltage, that is the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of ...
In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.
The phrase "spectral lines", when not qualified, usually refers to lines having wavelengths in the visible band of the full electromagnetic spectrum. Many spectral lines occur at wavelengths outside this range. At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
The version of the Rydberg formula that generated the Lyman series was: [2] = (= +) where n is a natural number greater than or equal to 2 (i.e., n = 2, 3, 4, .... Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left.
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length.