enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  3. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  4. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method.. The success of Fermat's method depends on finding integers and such that =, where is the integer to be factored.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...

  6. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  7. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    The quadratic sieve attempts to find pairs of integers x and y(x) (where y(x) is a function of x) satisfying a much weaker condition than x 2 ≡ y 2 (mod n). It selects a set of primes called the factor base, and attempts to find x such that the least absolute remainder of y(x) = x 2 mod n factorizes completely over

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By Dixon's theorem, the probability that the largest factor of such a number is less than (p − 1) 1/ε is roughly ε −ε; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a factorisation.