enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    The 2.5 ppm + 3.5 Hz signal will be split into 2.5 ppm + 7 Hz and 2.5 ppm. The 2.5 ppm − 3.5 Hz signal will be split into 2.5 ppm and 2.5 ppm − 7 Hz. The net result is not a signal consisting of 4 peaks but three: one signal at 7 Hz above 2.5 ppm, two signals occur at 2.5 ppm, and a final one at 7 Hz below 2.5 ppm.

  3. Isotopic shift - Wikipedia

    en.wikipedia.org/wiki/Isotopic_shift

    H NMR spectrum of a solution of HD (labeled with red bars) and H 2 (blue bar). The 1:1:1 triplet arises from the coupling of the 1 H nucleus (I = 1/2) to the 2 H nucleus (I = 1). In NMR spectroscopy, isotopic effects on chemical shifts are typically small, far less than 1 ppm, the typical unit for measuring shifts. The 1 H NMR signals for 1 H 2 ...

  4. Nuclear magnetic resonance spectra database - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Available through Wiley Online Library [3] (John Wiley & Sons), SpecInfo on the Internet NMR is a collection of approximately 440,000 NMR spectra (organized as 13 C, 1 H, 19 F, 31 P, and 29 Si NMR databases). The data are accessed via the Internet using a Java interface and are stored in a server developed jointly with BASF. The software ...

  5. Triple-resonance nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Triple-resonance_nuclear...

    Triple resonance experiments are a set of multi-dimensional nuclear magnetic resonance spectroscopy (NMR) experiments that link three types of atomic nuclei, most typically consisting of 1 H, 15 N and 13 C. These experiments are often used to assign specific resonance signals to specific atoms in an isotopically-enriched protein.

  6. Isotopic analysis by nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Isotopic_analysis_by...

    2 H-SNIF-NMR is the official AOAC method for determining the natural vanillin. The abundance of five monodeuterated isotopomers for vanillin can be measured by 2 H-SNIF-NMR. The vanillin molecule is represented in figure 11, all observable sites for which the site specific deuterium concentrations can be measured are referenced with a number.

  7. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    A classic example is the 1 H-NMR spectrum of 1,1-difluoroethylene. [5] The single 1 H-NMR signal is made complex by the 2 J H-H and two different 3 J H-F splittings. The 19 F-NMR spectrum will look identical. The other two difluoroethylene isomers give similarly complex spectra. [6]

  8. Nuclear magnetic resonance spectroscopy of carbohydrates

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Typical 1 H NMR chemical shifts of carbohydrate ring protons are 3–6 ppm (4.55.5 ppm for anomeric protons). Typical 13 C NMR chemical shifts of carbohydrate ring carbons are 60–110 ppm In the case of simple mono- and oligosaccharide molecules, all proton signals are typically separated from one another (usually at 500 MHz or better NMR ...

  9. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    Nucleic acid NMR is the use of NMR spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. As of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy. [2] Nucleic acid NMR uses similar techniques as protein NMR, but has several differences.