Search results
Results from the WOW.Com Content Network
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
The Turing test, originally called the imitation game by Alan Turing in 1949, [2] is a test of a machine's ability to exhibit intelligent behaviour equivalent to, or indistinguishable from, that of a human. Turing proposed that a human evaluator would judge natural language conversations between a human and a machine designed to generate human ...
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.
In his 1948 paper Turing defined two examples of his unorganized machines. The first were A-type machines — these being essentially randomly connected networks of NAND logic gates. The second were called B-type machines , which could be created by taking an A-type machine and replacing every inter-node connection with a structure called a ...
Computing Machinery and Intelligence" is a seminal paper written by Alan Turing on the topic of artificial intelligence. The paper, published in 1950 in Mind, was the first to introduce his concept of what is now known as the Turing test to the general public. Turing's paper considers the question "Can machines think?"
Mark Burgin argues that super-recursive algorithms such as inductive Turing machines disprove the Church–Turing thesis. [68] [page needed] His argument relies on a definition of algorithm broader than the ordinary one, so that non-computable functions obtained from some inductive Turing machines are called computable. This interpretation of ...
Turing machines with input-and-output also have the same time complexity as other Turing machines; in the words of Papadimitriou 1994 Prop 2.2: For any k -string Turing machine M operating within time bound f ( n ) {\displaystyle f(n)} there is a ( k + 2 ) {\displaystyle (k+2)} -string Turing machine M' with input and output ...