Search results
Results from the WOW.Com Content Network
Rubber elasticity is the ability of solid rubber to be stretched up to a factor of 10 from its original length, and return to close to its original length upon release. This process can be repeated many times with no apparent degradation to the rubber. [1] Rubber, like all materials, consists of molecules.
He is noted for several pioneering discoveries that advanced the field of polymer physics, which was recognised by the award of the Bingham Medal for rheology in 1965. These included the treatment of the flexible, randomly kinked molecule in Brownian motion of polymers; the explanation of the entropic origin of the elastic force; and the Kinetic Theory of Rubber Elasticity.
Yeoh model prediction versus experimental data for natural rubber. Model parameters and experimental data from PolymerFEM.com. The Yeoh hyperelastic material model [1] is a phenomenological model for the deformation of nearly incompressible, nonlinear elastic materials such as rubber.
The Gent hyperelastic material model [1] is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value .
For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.
The polynomial hyperelastic material model [1] is a phenomenological model of rubber elasticity. In this model, the strain energy density function is of the form of a polynomial in the two invariants , of the left Cauchy-Green deformation tensor. The strain energy density function for the polynomial model is [1]
When stretching the rubber band, you also align the structure to be more ordered. Therefore, when releasing the rubber band, it will spontaneously seek higher entropy state hence goes back to its initial state. This is what we called entropy-driven elasticity shape recovery. Region IV: The behavior in the rubbery flow region is highly time ...
In continuum mechanics, an Arruda–Boyce model [1] is a hyperelastic constitutive model used to describe the mechanical behavior of rubber and other polymeric substances. This model is based on the statistical mechanics of a material with a cubic representative volume element containing eight chains along the diagonal directions.